RCS—A System for Version Control

Wadter F. Tichy

Department of Computer Sciences
Purdue Uniersity
West Lafayette, Indiana 47907

ABSTRACT

An important problem in program d@opment and maintenance is version control,
i.e., the task of keeping a software system consisting oy resions and configurations
well organized. TheRevision Control System (RCS) is a software tool that assists with
that task. RCS manages revisions af tlocuments, in particular source programs, doc-
umentation, and test data. It automates the storing,va@friegging and identification of
revisions, and it provides selection mechanisms for composing configurafidnis.
paper introduces basic version control concepts and discusses the praaisgoofaon-
trol using RCS.For conserving space, RCS stores deltas, i.e., differences between suc-
cessve revisions. Seeral delta storage methods are discussed. Usage statisticshsttio
RCSS5s celta storage method is space and tinfecieht. Thepaper concludes with a
detailed surgy d version control tools.

Keywords: configuration management, history managemeeitsign control, résions,
deltas.

1995/06/01

RCS—A System for Version Control

Wadter F. Tichy

Department of Computer Sciences
Purdue Uniersity
West Lafayette, Indiana 47907

1. Introduction

Version control is the task of keeping sddiw systems consisting of nyaversions and configura-
tions well oganized. TheRevision Control System (RCS) is a set of UNIX commands that assist with that

task.

RCS’ primary function is to manageusion goups A revision group is a set of xe documents,
calledrevisions that e/olved from each otherA new revision is created by manually editing axisting
one. RCSorganizes the revisions into an ancestral tree. The initidi@n is the root of the tree, and the
tree edges indicate from which revision gegione eolved. Besidesnanaging indiidual revision groups,
RCS provides fbdble selection functions for composing configurations. RCS may be combined with

MAKE 1, resulting in a powerful package for version control.

RCS also offers facilities for merging updates with customer modifications, for uliettiboftvare
development, and for automatic identification. Identification is the ‘stamping’ w$imns and configura-
tions with uniqgue mares. Thesenarkers are akin to serial numbers, telling software maintainers unam-

biguously which configuration is before them.

RCS is designed for both production and experimentdat@ments. Inproduction ewironments,
access controls detect update conflicts anglepteoverlapping changes. In experimentalveonments,

where strong controls are counterprodegtit is possible to loosen the controls.

Although RCS was originally intended for programs, it is useful fgrtexi that is revised frequently
and whose previous revisions must be presenRCShas been applied successfully to store the source

text for drawings, VLSI layouts, documentation, specifications, test data, form letters and articles.

This paper discusses the practice @fsion control using RCS. It also introduces basic version con-
trol concepts, useful for clarifying current practice and designing similar sysieaision groups of indi-
vidual components are treated in thextnghree sections, and the extensions to configurationsafollo
Because of its size, a sesvd version control tools appears at the end of the paper.

An earlier version of this paper was publishe®aitware—Practice & Experiend®, 7 (July 1985), 637-654.

2. Getting started with RCS

Suppose a text filec is to be placed under control of RCSvdking the check-in command

ci f.c

creates a e revision group with the contents &t as the initial reision (numbered 1.1) and stores the
group into the fild.c,v. Unless told otherwise, the command deléteslt also asks for a description of the
group. Thedescription should state the common purpose of @bBions in the group, and becomes part of

the groups documentation. Allater check-in commands will ask for a log entwhich should summarize

the changes madégThe first revision is assigned a default log message, which just records the fact that it is

the initial revision.)

Files ending inv are calledRCS fileqv stands fowersions); the others are called working fild®.
get back the working filéc in the previous examplexecute the check-out command:

co fc

This command extracts the latest revision from the revision dromand writes it intd.c. The filef.c can
now be alited and, when finished, checked back in with

ci f.c

Ci assigns number 1.2 to thewneevision. If ci complains with the message

ci error: no lok st by <login>

then the system administrator has decided to configure RCS for a production environment by enabling the
‘strict locking feature’. If this feature is enabled, all RCS files are initialized such that check-in operations
require a lock on the previous revision (the one from which the currentvolve®). Lockingprevents
ovelapping modifications if seral people work on the same filéf locking is required, the xgsion

should hae keen locked during the check-out by using the option

co -l fc

Of course it is too late mofor the check-out with locking, becausehas already been changed; checking
out the file again wouldverwrite the modifications(To prevent accidental werwrites, co senses the pres-
ence of a wrking file and asks whether the user really intendedé¢poite it. The werwriting check-out

is sometimes useful for backing up to the previousi@n.) To be dle to proceed with the check-in in the
present case, firskecute

rcs -l f.c

This command retroaggly locks the latest revision, unless someone else locked it in the meaitithés

case, the te programmers imolved hare negotiate whose modifications should ¢gfrecedence.

If an RCS file is puiate, i.e., if only the wner of the file is expected to deposit revisions into it, the
strict locking feature is unnecessary and may be disaliestrict locking is disabled, the owner of the

RCS file need not lva a bck for check-in.For safety reasons, all others still d@urning strict locking of

and on is done with the commands:

rcs -U f.c and rcs -L f.c

These commands enable or disable the strict locking feature for each RCS ¥iduailyi The system

administrator only decides whether strict locking is enabled initially.

To reduce the clutter in a working directpell RCS files can be nved to a sibdirectory with the
nameRCS RCS commands look first into that directory for RCS fila.the commands presented abo
work with theRCSsubdirectory without change.t

It may be undesirable thatdeletes the wrking file. For instance, sometimes one woulclilo ave
the current revision, but continue editingvadhking

ci -l f.c

checks inf.c as usual, but performs an additional check-out with locking adteilsv Thusthe working file
does not disappear after the check-8imilarly, the option—u does a check-in followed by a check-out
without locking. This option is useful if the file is needed for compilation after the check-in. Both options

update the identification markers in the working file (see below).

Besides the operatiomsandco, RCS provides the following commands:

tab(%); li I. ident%etract identification markers rcs%change RCS file attributes rcsclean¥@emo
unchanged wrking files (optional) rcsdiff%compare revisions rcsfreeze%record a configuration (optional)
rcsmerge%merge revisions rlog%read log messages and other information in RCS files

A synopsis of these commands appears in the Appendix.

2.1. Automatic Identification

RCS can stamp source and object code with special identification strings, similar to product and
serial numbersTo dbtain such identification, place the marker

Id

into the text of a revision, for instance inside a comme&he check-out operation will replace this nerk
with a string of the form

$Id: filename evsionnumber date time author state kec$

This string need ner be buched, becausm keeps it up to date automaticallyfo propagte the markr
into object code, simply put it into a literal character string. In C, this is done as follows:
static char rcsid[] = "Id";

The commanddentextracts such markers fromyafile, in particular from object codddenthelps to find
out which revisions of which modules were used invargprogram. Itreturns a complete and unambigu-
ous component list, from which a gopf the program can be reconstructed. This facility vslirable for
program maintenance.

T Pairs of RCS and working files can actually be specified in 3 ways: a) bothvame i only the wrking
file is given, c) only the RCS file is @én. If a pair is given, both files may hee abitrary path prefixes; RCS
commands pair them up intelligently.

There are seral additional identification markers, one for each component of ld. The marker
Log

has a similar function. It accumulates the log messages that are requested during check-in. Thus, one can
maintain the complete history of a revision directly inside it, by enclosing it in a comment. Figure 1 is an
edited version of a log contained irvisgon 4.1 of the fileci.c. The log appears at the beginning of the file,

and makes it easy to determine what the recent modifications were.

/*

*$log:ci.cv$

* Revision 4.1 1983/05/10 17:03:06 wft

* Added option —d and -vend updated assignment of date, etc. to delta.
* Added handling of default branches.

*

* Revision 3.9 1983/02/15 15:25:44 wft
* Added call to fastcopy() to cgpemainder of RCS file.

*

* Revision 3.8 1983/01/14 15:34:05 wift
* Added ignoring of interrupts while weRCS file is renamed;

* avoids deletion of RCS files by interrupts.
*

* Revision 3.7 1982/12/10 16:09:20 wft
* Corrected checking of return code from diff.
* An RCS file nav inherits its mode during the first ci from the working file,
* except that write permission is rexen.
*
Figure 1. Log entries produced by the marker Log.
Since rgisions are stored in the form of differences, each log message is physically stored once, indepen-

dent of the number of revisions present. Thus, the Log marker incurs negligible\swhead

3. TheRCS Revision Tee

RCS arranges revisions in an ancestral tigee ci command hilds this tree; the auxiliary command
rcs prunes it. The tree has a roovisgon, normally numbered 1.1, and successgvisions are numbered
1.2, 1.3, etc. The first field of a revision number is calleddlease numbeand the second one thevel
number Unless gien explicitly, the ci command assigns aweevision number by incrementing thevé
number of the previousvision. Therelease number must be incrementeplieitly, using the-r option
of ci. Assuming there are revisions 1.1, 1.2, and 1.3 in the RCS filgttfie sommand

ci -r2.1 fc or ci —r2 f.c

assigns the number 2.1 to them@\ision. Latercheck-ins without the-r option will assign the numbers
2.2, 2.3, and so on. The release number should be incremented only at major transition pointséh the de

opment, for instance when ameelease of a software product has been completed.

3.1. Whenare branches needed?

A young revision tree is slender: It consists of only one branch, called the thanthe tree ages,

side branches may form. Branches are needed in the following 4 situations.
Temporary fixes
Suppose a tree has 5 revisions grouped in 2 releases, as illustrated in Figarisian 1.3, the last

one of release 1, is in operation at customer sites, while release 2 isérdawiopment.

11 1.2 1.3 21 22 L

Figure 2. A slender revision tree.
Now imagine a customer requesting a fix of a problem in revision 1.3, although ae®apaent
has meed on to elease 2. RCS does not permit an extra revision to be spliced in between 1.3 and
2.1, since that would not reflect the actualdigpment history Instead, create a branch atiseon
1.3, and check in the fix on that brancFhe first branch starting at 1.3 has number 1.3.1, and the
revisions on that branch are numbered 1.3.1.1, 1.3.1.2Téte double numbering is needed toallo
for another branch at 1.3, say 1.3Revisions on the second brancltomid be numbered 1.3.2.1,
1.3.2.2, and so on. The following steps create branch 1.3.1 and add revision 1.3.1.1:

tab(%); 1 11.

%co -rl1.3 fc% — chek out revision 1.3

%edit fc% — chang it

%ci -r1.3.1 fc% — chekitin on branch 1.3.1
This sequence of commands transforms the tree of Figure 2 into the one in Figure 3. Note that it may
be necessary to incorporate the differences between 1.3 and 1.3.1.1 into a revisidn?atTae

operationrcsmege automates this process (see the Appendix).

11 1.2 13 21 22 >

\ 13110 =

Figure 3. A revision tree with one side branch

Distributed development and customer modifications
Assume a situation as in Figure 2, where revision 1.3 is in operatiovesd|saistomer sites, while
release 2 is in delopment. Customesites should use RCS to store the distributed soéwHav-
eve, customer modifications should not be placed on the same branch as the distributed source;

instead, thg should be placed on a side brancWhen the next software distribution aes, it

should be appended to the trunk of the cust®TRES file, and the customer can then geethe
local modifications back into the weelease. Irthe abee example, a customes’RCS file would
contain the following tree, assuming that the customer hawvedaeiision 1.3, added his local mod-
ifications as revision 1.3.1.1, then remsi revision 2.4, and merged 2.4 and 1.3.1.1, resulting in
24.1.1.

1.3 2.4

1311 2411

Figure 4. A customers revision tree with local modifications.

This approach is actually practiced in the CSNET project, wheeeaseinversities and a compgn

cooperate in desloping a national computer network.

Parallel development
Sometimes it is desirable to explore an alternate design ofeaedif implementation technique in
parallel with the main line delopment. Sucldevelopment should be carried out on a side branch.

The experimental changes may later bevedanto the main line, or abandoned.

Conflicting updates
A common occurrence is that one programmer has eldeclt a revision, but cannot complete the
assignment for some reason. In the meantime, another person must perform another modification
immediately In that case, the second person should check-out the same revision, modify it, and

check it in on a side branch, for later merging.

Every node in a revision tree consists of the feilg attributes: a revision numbex check-in date
and time, the autha@’identification, a log entra gate and the actualxe All these attributes are deter
mined at the time the revision is checked in. The state w#ribdicates the status of avigon. Itis set
automatically to ‘experimental’ during check-ii\ revision can later be promoted to a higher status, for

example ‘stable’ or ‘released’. The set of states is user-defined.

3.2. Reisions are represented as deltas

For conserving space, RCS stores revisions in the form of deltas, i.e.fasrdies betweenvie

sions. Theuser interface completely hides this fact.

A delta is a sequence of edit commands that transforms one string into afitheleltas empied
by RCS are line-based, which means that the only edit command&dlire insertion and deletion of

lines. If a sngle character in a line is changed, the edit scripts consider the entire line chahged.

programdiff2 produces a small, line-based delta between pairsxbfikes. A charactetbased edit script

would take much longer to compute, and would not be significantly shorter.

Using deltas is a classical space-time tradeoff: deltas reduce the space consumed, but increase access
time. Hawever, a \ersion control tool should impose as little delay as possible on programBxeessie
delays discourage the use of version controls, or induce programmerg thdekuts that compromise
system intgrity. To gain reasonably fast access time for both editing and compiling, RCS arranges deltas
in the following way. The most recent revision on the trunk is stored intédk.other revisions on the
trunk are stored asverse deltas.A revese delta describes Wao go tackward in the deelopment his-
tory: it produces the desired revision if applied to the successor of ¢igbmne Thisimplementation has
the advantage that extraction of the latest revision is a simple and fasipsgption. Addinga rew revi-
sion to the trunk is als@ét: ci simply adds the e revision intact, replaces the previous revision with a

reverse delta, and keeps the rest of the old deltas. Threquires the computation of only oneangelta.

Branches need special treatment. Theaailution would be to store complete copies for the tips of
all branches.Clearly this approach would cost too much space. Instead, RCSfarsesrd deltas for
branches. Rgenerating a rgsion on a side branch proceeds as fedlo First,extract the latest revision on
the trunk; secondlyepply reverse deltas until the fork vesion for the branch is obtained; thirdgpply for-
ward deltas until the desired branch revision is reachiédure 5 illustrates a tree with one side branch.

Triangles pointing to the left and right representrse and forward deltas, respeely.

N E

Figure 5. A revision tree with reerse and forward deltas.

Although implementing fast check-out for the latest trunk revision, this arrangement has the disad-
vantage that generation of other revisions takes time proportional to the number of deltas dmplied.
example, rgenerating the branch tip in Figure 5 requires application efddltas (including the initial
one). Sincausage statistics shothat the latest trunk revision is the one that is netdién 95 per cent of
all cases (see the section on usage statistics), biasing check-out tawe of that revision results in sig-
nificant saings. Havever, careful implementation of the delta application process is necessarywtdepro

low retrieval overhead for other revisions, in particular for branch tips.

There are seral techniques for delta application. Theuwsame is to pass each delta to a general-

purpose text editorA prototype of RCS woked the UNIX editored both for applying deltas and for

expanding the identification maeks. Althougheasy to implement, performance was pawring to the

high start-up costs and excess generalitgdf An intermediate version of RCS used a special-purpose,
stream-oriented editorThis technique reduced the cost of applying a delta to the cost of checking out the
latest trunk reision. Thereason for this behavior is that each delta applicatieoivias a complete pass

ove the preceding revision.

However, there is a much better algorithriote that the deltas are line oriented and that most of the
work of a stream editor Wiolves coping unchanged lines from one revision to thetné\ faster algorithm
avads unnecessary copying of character strings by uspigce table A piece table is a one-dimensional
array specifying hav a gven revision is ‘pieced together’ from lines in the RCS file. Suppose piece table
PTr represents kasionr. Then PTr[i] contains the starting position of linef revisionr. Application of

the next delta transforms piece taBI'lér into PT For instance, a delete command reewoa ®ries of

r+1-
entries from the piece table. An insertion command insemseng&ies, moving the entries following the
insertion point further down the arrayhe inserted entries point to the text lines in the delta. Thus, no I/O

is involved cept for reading the delta itself. When all deltasehbeen applied to the piece table, a
sequential pass through the table looks up each line in the RCS file and copies it to the output file, updating
identification markrs at the same time. Of course, the RCS file must permit random access, since the
copied lines are scattered throughout that file. Figure 6 illustrates an RCS file witivisions and the

corresponding piece tables.

Figure 6 is rot available.

Figure 6. An RCS file and its piece tables

The piece table approach has the property that the time for applying a single delta is roughly deter
mined by the size of the delta, and not by the size of theioa. For example, if a delta is 10 per cent of
the size of a revision, then applying itéakonly 10 per cent of the time to generate the latest truigkore

(The stream editor would taKIO0 per cent.)

There is an important altermagi for representing deltas that affects performarﬁﬁCé a precur-
sor of RCS, usemterleaveddeltas. Afile containing interleged deltas is partitioned into blocks of lines.
Each block has a header that specifies to which revision(s) the block belongs. The blocks are sorted out in
such a way that a single pasgwothe file can pick up all the lines belonging to eegirevision. Thusthe
regeneration time for all ¥ésions is the same: all headers must be inspected, and the associated blocks
either copied or skipped. As the number of revisions increases, the cost of retrigviegisaon is much
higher than the cost of checking out the latest trunk revision widhses deltas.A detailed comparison of
SCCS:s interleaved deltas and RCS’revase deltas can be found in Reference 4. This reference considers
the version of RCS with the stream editor orifjhe piece table method imwes performance furtherso

that RCS is avays faster than SCCS, except if 10 or more deltas are applied.

Additional speed-up for both delta methods can be obtained by caching the most recently generated
revision, as has been implemented in D&thh caching, access time to frequently used revisions can

approach normal file access time, at the cost of some additional space.

4. Locking: A Controversial Issue

The locking mechanism for RCS wasfidillt to design. The problem and its solution are first pre-
sented in their ‘pure’ form, follwed by a discussion of the complications caused by ‘real-world’ considera-

tions.

RCS must preent two or more persons from depositing competing changes of the safisemne
Suppose tw programmers check out revision 2.4 and modify it. Programmer A checks in a revision before
programmer B.Unfortunately programmer B has not seefs Ahanges, so the effect is thds Bhanges are
covered up by BS deposit. As changes are not lost since aligons are szd, but thg are confined to a

single revision.

This conflict is preented in RCS by locking.Whenaer someone intends to edit a revision (as
opposed to reading or compiling it), the revision should be checked out and locked, usihgptien on
co. On subsequent check-imj tests the lock and then rewes it. At most one programmer at a time may
lock a particular résion, and only this programmer may check in the succeeduigjae. Thuswhile a

revision is locked, it is the exclwsi responsibility of the locker.

An important maxim for software tools kRCS is that thg must not stand in the ay of making
progress with a project. This consideration leadsterabwealenings of the locking mechanism. First of
all, even if a revision is locked, it can still be chestt out. This is necessary if other people wish to compile
or inspect the loakd revision while the next one is in preparation. The only operatiopsdnheot do are
to lock the revision or to check in the succeeding decondly check-in operations on other branches in

¥ Note that this problem is entirely different from the atomicity probléitomicity means that concurrent
update operations on the same RCS file cannot be permitted, because that may result in inconsistent data.
Atomic updates are essential (and implemented in RCS), but do netrsekonflict discussed here.

=1LU-

the RCS file are still possible; the locking of one revision does not affectfzer revision. Thirdly revi-

sions are occasionally loe# for a long period of time because a programmer is absent or otherwise unable

to complete the assignmerf.another programmer has to neat pessing change, there are the failog

three alternaties for making progress: a) find out who is holding the lock and ask that person to release it;

b) check out the locked revision, modify it, check it in on a branch, anglentlee changes later; c) break

the lock. Breaking a lock lees a highly visible trace, namely an electronic mail message that is sent auto-
matically to the holder of the lock, recording the breaker and a commentary requested frohixén.
breaking locks is tolerated under certain circumstances, but will not go unndigpdrience has stm

that the automatic mail message attaches a high enough stigma to lock breaking, such that programmers

break locks only in real emergencies, or when a co-worker resigns geslleked revisions behind.

If an RCS file is priate, i.e., when a programmewns an RCS file and does not expect anyone else
to perform check-in operations, locking is an unnecessary nuishntlds case, the ‘strict locking feature’
discussed earlier may be disabled vated that file protection is set such that only the owner may write the
RCS file. This has the effect that only thener can check-in revisions, and that no lock is needed for

doing so.

As added protection, each RCS file contains an access list that specifies the users wsoutey e
update operations. If an access list is ematyy normal UNIX file protection applies. Thus, the access
list is useful for restricting the set of people whoud otherwise hae update permission. Just as with
locking, the access list has no effect on read-only operations seoh &his approach is consistent with

the UNIX philosoply of openness, which contributes to a produetoftware deelopment environment.

5. Configuration Management

The preceding sections describedviHRCS deals with revisions of individual components; this sec-
tion discusses o to handle configurationsA configuration is a set of revisions, where eackisien
comes from a different revision group, and thésiens are selected according to a certain criterfear.
example, in order to build a functioning compjltre ‘right’ revisions from the scannéhe parserthe opti-
mizer and the code generator must be combifds, in conjunction with MAKE, provides a number of

facilities to effect a smooth selection.

5.1. RCSSelection Functions

Default selection
During development, the usual selection criterion is to choose the latest revision of all components.
Thecocommand makes this selection byaidf. For example, the command

Cco *V

retrieves the latest revision on the default branch of each RCS file in the current dire€tay

=L1l-

default branch is usually the trunkytomay be set to be a side branch. Side branches as defaults are

needed in distributed softwarevd@®pment, as discussed in the section on the RCS revision tree.

Release based selection
Specifying a release or branch number selects the latésiorein that release or branchror
instance,

co -2 *v

retrieves the latest reision with release number 2 from each RCS file. This selection V&mient if

a release has been completed anebld@ment has maed on to he next release.

State and author based selection
If the highest leel number within a gien release number is not the desired one, the stateuédtrib
can help.For example,

co -r2 -sReleased *,v

retrieves the latest revision with release number 2 whose state attribute is ‘Released’. Of course, the
state attribute has to be set appropriatedyng theci or rcs commands. Anothealternatve is o

select a revision by its authassing the-w option.

Date based selection
Revisions may also be selected by date. Suppose a release of an entire system was completed and
current on March 4, at 1:00 p.m. local time. Then the command
co —d’March 4 1:00 pm LIT" *,v

checks out all the components of that release, independent of the numbéenrgl option specifies
a ‘cutoff date’, i.e., the rgsion selected has a check-in date that is closest to, but not after the date
given.

Name based selection
The most pwerful selection function is based on assigning symbolic names to revisions and
branches. Itarge systems, a single release number or date is not sufficient to collect the appropriate
revisions from all groupsFor example, suppose one wishes to combine release 2 of one subsystem
and release 15 of anothdviost likely, the creation dates of those releases differ also. Thus, a single
revision number or date passed to toecommand will not siice to select the right vesions. Sym-
bolic revision numbers sadvthis problem. Each RCS file may contain a set of symbolic names that
are mapped to numeric revision numbefFar example, assume the symbéB is bound to release

number 2 in files,v, and to revision number 15.9 trv. Then the single command

co -rv3 s,v tv

retrieves the latest revision of release 2 franw, and revision 15.9 from,v. In a large system with
mary modules, checking out all revisions with one command greatly simplifies configuration man-

agement.

Judicious use of symbolicvision numbers helps with genizing large configurationsA special
commandycsfreezeassigns a symbolic revision number to a selected revisioveiy BCS file. Rcsfreeze
effectively freezes a configuration. The assigned symbolitsien number selects all components of the
configuration. Ifnecessarysymbolic numbers mayven be ntermixed with numeric onesThus,V3.5in

the abwe example would select revision 2.5dwvand branch 15.9.5 inwv.

The options-r, —s, -w and-d may be combined. If a branch isven, the latest revision on that

branch satisfying all conditions is retrégl; otherwise, the default branch is used.

5.2. CombiningMAKE and RCS

MAKE1 is a program that processes configurations. It igedrby configuration specifications
recorded in a special file, called a ‘Mdite’. MAKE avadds redundant processing steps by comparing cre-
ation dates of source and processed objdets.example, when instructed to compile all modules of a

given system, it only recompiles those source modules that were changed sinaetbgrocessed last.

MAKE has been extended with an auto-checkout feature for RCS.* When a certain file to be pro-
cessed is not present, MAKE attempts a check-out operdfisuccessful, MAKE performs the required
processing, and then deletes the clkdchut file to conseevpace. Theselection parameters discussed
abore @n be passed to MAKE either as parameters, or directly embedded in teléMald AKE has also
been extended to search the subdirectory ndR@8for needed files, rather than just the curreatking
directory Howeve, if a working file is present, MAKE totally ignores the corresponding RCS file and uses
the working file. (In newer versions of MAKE distributed by AT&T and others, auto-checkout can be
achieved with the rule DERULT, instead of a special extension of MAKHowever, a fle checked out by

the rule DERULT will not be deleted after processiiResclearcan be used for that purpose.)

With auto-checkout, RCS/MAKE can effect a selection rule especially tuned for multi-person soft-
ware development and maintenancdn these situations, programmers should obtain configurations that
consist of the revisions tiidavepersonally cheakd out plus the latest checked in revision of all othér re

sion groups. This schema can be set up as follows.

Each programmer chooses arking directory and places into it a symbolic link, narReiS to the
directory containing the relant RCS files. The symbolic link makes sure thet andci operations need
only specify the working files, and that the Makefile need not be chafdedprogrammer then checks
out the needed files and modifies them. If MAKE igoked, it composes configurations by selecting those

* This auto-checkout extension igadable only in some versions of MAKE, e.g. GNU MAKE.

=1LO~

revisions that are checked out, and the rest from the subdiredR@8y The latter selection may be con-
trolled by a symbolic revision number oryaof the other selection criteridf there are seeral program-
mers editing in separate working directoriesytae insulated from each othgerthanges until checking in

their modifications.

Similarly, a maintainer can recreate an older configuration by starting to work in an erogkngv
directory During the initial MAKE irvocation, all revisions are selected from RCS files. As the maintainer
checks out files and modifies them, avneonfiguration is gradually built upEvery time MAKE is

invoked, it substitutes the modified revisions into the configuration being manipulated.

A final application of RCS is to use it for storing Méles. Reision groups of Makefiles represent
multiple versions of configurationdVheneer a cnfiguration is baselined or distributed, the best approach
is to unambiguously fix the configuration with a symbolic revision number by cadiéfigezeto embed
that symbol into the Makefile, and to check in the bfé& (using the same symbolic revision number).

With this approach, old configurations can be regenerated easily and reliably.

6. UsageStatistics

The following usage statistics were collected oo ®EC VAX-11/780 computers of the Purdue
Computer Science DepartmerBoth machines are mainly used for research purposes. Thus, the data
reflect an evironment in which the majority of projectsvisive prototyping and advanced softwarevde

opment, but relately little long-term maintenance.

For the first experiment, thei andco operations were instrumented to log the number of bakw
and forward deltas appliedThe data were collected during a 13 month period from Dec. 1982 to Dec.
1983. Able | summarizes the results.

centerbox,tab(#); cfc|c|c|c s|c s c|c[c|c|c s|c s In|n|n|n n|@peration#Total#dtal deltas#Mean
deltas#Operations#Branch #operatidhapplied#applied#with >1 delta#operations _ cé 7867#
9320#1.18#509#(6%)#203#(3%) «ci # 3468# 2207#0.64# 85#(2%)# 75#(2%) ci &
Cco#11335#11527#1.02#594#(5%)#278#(2%)

Table |. Statistics foroandci operations.

The first two lines shar statistics for check-out and check-in; the third line shows the combination.
Recall thatci performs an implicit check-out to obtain a revision for computing the delta. In all measures
presented, the most recent revision (stored intact) counts as oneTlthataumber of deltas applied repre-

sents the number of passes necessdrgre the first ‘pass’ is a copying step.

Note that the check-out operation ieeuted more than twice as frequently as the check-in opera-
tion. Thefourth column gies the mean number of deltas applied in all three caBeasci, the mean num-
ber of deltas applied is less than offde reasons are that the initial check-in requires no delta at all, and
that the only timeci requires more than one delta is for branch@slumn 5 shows the actual number of

operations that applied more than one delta. The last column indicates that branches were not used often.

e N

The last three columns demonstrate that the most recent trunk revisioraisthy most frequently
accessed. df RCS, check-out of thisvision is a simple cgpoperation, which is the absolute minimum
given the copy-semantics @o. Access to older revisions and branches is more common in non-academic
ervironments, yeten if access to older deltas were an order of magnitude more frequent, the combined
aveage number of deltas appliedwd still be belav 1.2. SinceRCS is faster than SCCS until up to 10

delta applications, werse deltas are clearly the method of choice.

The second experiment, conducted in March of 1984hird sureying the existing RCS files on
our two machines. Thegoal was to determine the mean number of revisions per RCS file, as well as the
space consumed by therfiable 11 shows the resultgTables | and Il were produced at different times and
are unrelated.)

centefbox,tab(#); c|c|c|c|clc|lcc]clc|c]clc|cl]n|n|n]|n]|n]|n #Total
RCS#Dtal#Mean#Mean size of#Mean size of#thead #files#rasions#reisions#RCS files#ra-
sions _ All files #8033#11133#1.39#6156#5585#1.10 Files with#1477# 4578#3.10#8074#604121.34
deltas

Table Il. Statistics for RCS files.

The mean number of revisions per RCS file is 1B6lumns 5 and 6 shothe mean sizes (in bytes)
of an RCS file and of the latest revision of each RCS file, regggctirhe ‘overhead’ column contains the
ratio of the mean sizes. Assuming that all revisions in an RCS file are approximately the same size, this

ratio gives a measure of the space consumed by the extra revisions.

In our sample, wer 80 per cent of the RCS files contained only a singlésien. Thereason is that
our systems programmers routinely check in all source files on the uisinibapes, \een though thg may
never touch them aajin. To get a better indication of momuch space savings are possible with deltas, all
measures with those files that contained 2 or more revisions were recomputed. Only for those files is RCS
necessary As shown in the second line, thev@age number of késions for those files is 3.10, with an
overhead of 1.34. This means that thera 2.10 deltas require 34 per cent extra space, or 16 per cent per
extra revision. Rochking’ measured the space consumed by SCCS, and reportedragesof 5 reisions
per group and anverhead of 1.37 (or about 9 per cent per extrasien). Ina later paperGIasse?3
obsened an gerage of 7 reisions per group in a single, large project, but providedvwethead figure.In
his paper on DSE% Leblang reported that delta storage combined with blank compression results in an
overhead of a mere 1-2 per cent perisin. Sinceeading blanks accounted for about 20 per cent of the

suneyed Pascal programs, a revision group with 5-10 members was smaller than a single clegrtext cop

The aboe dsenations demonstrate clearly that the space needed for extra revisions is\fttall.
delta storage, the luxury of keeping multiple revisions online is certaifugdable. Infact, introducing a
system with delta storage may reduce storage requirements, because programmerseotieck-sg
copies agpway. Since back-up copies are stored much mofigieftly with deltas, introducing a system

such as RCS may actually free a considerable amount of space.

b O L

7. Surwvey of Version Control Tools

The need to keep back-up copies of software arose when programs and data were no longer stored on
paper media, but were entered from terminals and stored onBhsk-up copies are desirable for reliabil-
ity, and maly modern editors automatically vea a ack-up cop for every file touched. This strategy is
valuable for short-term back-ups, but not suitable for long-term version control, singéstmgeback-up

copy is overwritten whenger the corresponding file is edited.

Tape archies ae suitable for long-term, fhiihe storage. If all changed files are dumped on a back-up
tape once per dagld revisions remain accessiblélowever, tape archies ae unsatisdctory for \ersion
control in sgeral ways. Firstbacking up the file systenvay 24 hours does not capture intermediateé re
sions. Secondythe old reisions are not online, and accessing them is tedious and time-consuming.
particular it is impractical to compare weral old revisions of a group, because that may require mounting
and searching seral tapes. Tape archies ae important fail-safe tools in thevent of catastrophic disk
failures or accidental deletions, but yrere ill-suited for version controlCorversely, version control tools

do not obviate the need for tape avehi

A natural technique for keepingvaeal old revisions online is to wer delete a file. Editing a file
simply creates a mefile with the same name, but with a different sequence nuriiibés technique, \ail-
able as an option in DEEVMS operating system, turns out to be inadequate for version cohtrst, it
is prohibitively expensve in terms of storage costs, especially since no data compression techniques are
employed. Secondlyindiscriminately storingvery change produces too marevisions, and programmers
have dfficulties distinguishing them. The proliferation ofvigons forces programmers to spend much
time on finding and deleting useless fil@irdly, most of the support functions &docking, logging, rei-

sion selection, and identification described in this paper arevaitzide.

An alternatve goproach is to separate editing fromvisgon control. The user may repeatedly edit a
given revision, until freezing it with an explicit command. Once a revision is frozen, it is stored perma-
nently and can no longer be modified. (In RCS, freezing a revisions is dong.ilditinga frozen rei-
sion implicitly creates a meone, which can ajn be changed repeatedly until it is frozen itsdlhis
approach saes exactly those revisions that the user considers important, egskhe number ofuisions
manageable. IBM CLEAR/CASTER/, AT&T's CCSS, cMU's D8 and DECs aMs?, are ecamples
of version control systems using this approach. CLEAR/CASTER maintains a data base of programs, spec-
ifications, documentation and messages, using ddlmgoal is to provide controlver the deelopment
process from a managementwpmint. SCCSstores multiple revisions of sourctén an ancestral tree,
records a log entry for each revision, provides access control, and has facilities for uniquely identifying
each rgision. An efficient delta technique reduces the space consumed by each revision group. SDC is
much simpler than SCCS because it stores not more tlarewsions. Havever, it maintains a complete
log for all old revisions, some of which may be on back-up tape. CMSSIKS, manages tree-structured

revision groups, but offers no identification mechanism.

=10~

Tools for dealing with configurations are still in a state of fI®CCS, SDC and CMS can be com-
bined with MAKE or MAKE-like programs. Sincé@exible selection rules are missing from all these tools,
it is sometimes diicult to specify precisely which revision of each group should be passed to MAKE for
building a desired configuratioriThe Xerox Cedar syste]rﬂ provides a ‘System Modeller’ that can telol
a mnfiguration from an arbitrary set of moduleistons. Therevisions of a module are only distinguished
by creation time, and there is no tool for managing groups. Since the selection rules areptimi8ys-
tem Modeller appears to be somewhat tedious to Apello’s DSEEl5 is a sophisticated software engineer
ing ervironment. Itmanages revision groups in a way similar to SCCS and GBBfigurations areuilt
using ‘configuration threads’A configuration thread states which revision of each group named in a con-
figuration should be choser configuration thread may contain dynamic specifiers (e.g., ‘choosevihe re
sions | am currently working on, and the most recent revisions otherwise’), which are bound automatically
at kuild time. It also provides a notification mechanism for alerting maintainers about the need to rebuild a

system after a change.

RCS is based on a general model for describing multi-version/multi-configuration s]y1ste'ﬁ|ua
model describes systems using AND/OR graphs, where AND nodes represent configurations, and OR
nodes represent version groups. The modadsgise to a suit of selection rules for composing configura-
tions, almost all of which are implemented in RCS. Thasiens selected by RCS are passed to MAKE
for configuration bilding. Revision group management is modelled after SCCS. RCS retains SG$8’
features, but offers a significantly simpler user interface, flexible selection rules, adequate integration with

MAKE and improved identification. Adetailed comparison of RCS and SCCS appears in Reference 4.

An important component of all revision control systems is a program for computing deG&S
and RCS use the prograﬂiffz, which first computes the longest common substring of revisions, and
then produces the delta from that substring. The delta is simply an edit script consisting of deletion and

insertion commands that generate one revision from the other.

A delta based on a longest common substring is not necessarily minimal, because it does not tak
adwantage of crossing block mes. Crossindlock moves aise if two or more blocks of lines (e.g., proce-
dures) appear in a different order irotrevisions. Anedit script desied from a longest common substring
first deletes the shorter of theawlocks, and then reinserts iHeckeI12 proposed an algorithm for detect-
ing block mares, but since the algorithm is based on heuristics, there are conditions under which the gener
ated delta is far from minimal. DSEE uses this algorithm combined with blank compression, apparently
with satisfactory weerall results. A new dgorithm that is guaranteed to produce a minimal delta based on

block moves gppears in Reference 12 future release of RCS will use this algorithm.

Acknowledgement®ary people hae relped mak RCS a success by contributed criticisms, sugges-
tions, corrections, andzen whole nev commands (including manual pages). The list of people is too long

to be reproduced here, but my sincere thanks for their help and goodwill goes to all of them.

=LIl-

Appendix: Synopsis of RCS Operations

ci — check in revisions
Ci stores the contents of a working file into the corresponding RCS file asravison. If the RCS
file doesnt exist, ci creates it. Ci removes the working file, unless one of the options or —I is
present. Br each check-iri asks for a commentary describing the changesvelgtithe preious
revision.

Ci assigns the revision numbewei by the—r option; if that option is missing, it degs the number
from the lock held by the user; if there is no lock and locking is not drictcrements the number
of the latest revision on the trunk side branch can only be started by explicitly specifying its num-
ber with the-r option during check-in.

Ci also determines whether the revision to be checked inféseatit from the previous one, and asks
whether to proceed if nofThis facility simplifies check-in operations for large systems, because one
need not remember which files were changed.

The option—k searches the checked in file for identification reeslcontaining the attributessigion
number check-in date, author and state, and assigns these towhevigon rather than computing
them. Thisoption is useful for software distrtion: Recipients of distributed software using RCS
should check in updates with thd& option. Thiscorvention guarantees thatuision numbers,
check-in dates, etc., are the same at all sites.

co - check out revisions
Corretrieves revisions according to revision numbeate, author and state atuites. Iteither places
the revision into the working file, or prints it on the standard outpotalways expands the identifi-
cation markers.

ident— extract identification markers
Identextracts the identification markers expandedtbjrom ary file and prints them.

rcs — change RCS file attributes
Rcsis an administratie gperation that changes access lists, locks, unlocks, breaks locks, toggles the
strict-locking feature, sets state attidss and symbolic revision numbers, changes the description,
and deletes résions. Arevision can only be deleted if it is not the fork of a side branch.

rcsclean— clean working directory
Rcsclearemores working files that were checked out buverechanged.*

rcsdiff — compare revisions
Rcsdiffcompares tw revisions and prints their difference, using the UNIX tdiff. One of the rei-
sions compared may be checked out. This command is useful for finding out about changes.

rcsfreeze- freeze a configuration
Rcsfreezassigns the same symboliwiggon number to a gen revision in all RCS files. This com-
mand is useful for accurately recording a configuration.*

rcsmege— merge revisions
Rcsmege memges tw revisions, revl and rev2, with respect to a common ancestdy 3-way file
comparison determines the segments of lines that are (a) the same in allvisiersteor (b) the
same in 2 revisions, or (c) different in all thréeor all segments of type (b) wherewl is the difer-
ing revision, the segment eVl replaces the corresponding segmentes®. Type (c) indicates an
overlapping change, is flagged as an erand requires user intervention to select the correct alterna-
tive.

rlog — read log messages
Rlogprints the log messages and other information in an RCS file.

* Thercscleanandrcsfreez&ecommands are optional and are netagk installed.

References

1.

10.

11.

12.

13.

FeldmansStuart I., “Make—A Program for Maintaining Computer PrograrBgftware—Pactice &
Experience9, 3, pp. 255-265 (March 1979).

Hunt,James Wand Mcliroy, M. D., “An Algorithm for Differential File Comparisch41, Comput-
ing Science Technical Report, Bell Laboratories (June 1976).

RochkindMarc J., “The Source Code Control SystelBEE Transactions on SoftwarEngineering,
SE-1, 4, pp. 364-370 (Dec. 1975).

Tichy, Walter F., “Design, Implementation, and dhvation of a Revision Control System” Rro-
ceedings of the 6th International Conference on So#twagineering,pp. 58-67, ACM, IEEE, IPS,
NBS (September 1982).

Leblang,David B. and Chase, Robert P., “Computer-Aided SafawEngineering in a Disttiited
Workstation Emironment,” SIGPLAN Notices19, 5, pp. 104-112 (May 1984). Proceedings of the
ACM SIGSOFT/SIGPLAN Software Engineering Symposium on Practical Softwaveldpenent
Environments..

GlasserAlan L., “The Evolution of a Source Code Control SysteBuftwae Engineering Notes3,
5, pp. 122-125 (Ne 1978). Proceedings of the Software Quality and Assurance Workshop.

Brown, H.B., “The Clear/Caster SysteriNato Conference on SoftveaEngineering Rome(1970).

HabermannA. Nico, A Sftware Development Control Systeriechnical Report, Carmgge-Mellon
University, Department of Computer Science (Jan. 1979).

DEC, Code Mangement System,Digital Equipment Corporation (1982). Document
No. EA-23134-82.

LampsonButler W and Schmidt, Eric E., “Practical Use of a Polymorphic Applieatianguage” in
Proceedings of the 10th Symposium on Principles ofrBmming Languges, pp. 237-255, &M
(January 1983).

Tichy, Walter F, “A Data Model for Programming Support Environments and its Application” in
Automated Tools for Information System Design andellmented. Hans-Jochen Schneider and
Anthory I. Wasserman, North-Holland Publishing Compakmsterdam (1982).

Heclel, Paul, A Technique for Isolating Differences Between Filé&Sopmmunications of theGM,
21, 4, pp. 264-268 (April 1978).

Tichy, Walter F, “The String-to-String Correction Problem with Block %s,” ACM Transactions
on Computer Systeni, 4, pp. 309-321 (No 1984).

